Learning Mathematical Properties of Integers

Maria Ryskina
mryskina@cs.cmu.edu

Main idea

Formulating mathematical hypotheses often involves noticing useful patterns in sets of numbers. Can we help automate it?

We learn NLP-style number embeddings from a corpus of mathematically interesting integer sequences and probe them for number-theoretic knowledge.

- Online Encyclopedia of Integer Sequences

Corpus of 336 K integer sequences that represent interesting mathematical properties of different levels of complexity: oeis.org
$2,3,5,7,11,13,17,19,23,29, \ldots$
$0,1,1,2,3,5,8,13,21, \ldots$
$0,0,4,10,20,34,52,73,100, \ldots$
Prime numbers
Fibonacci numbers
Greatest possible number of diagonals
of a polyhedron having n faces

- Sequences are represented by n first elements (avg. 43)
- We split the corpus 90/5/5\% for train/dev/test
- Integers appearing < 3 times in train replaced with UNK

Embeddings

- We train embeddings on OEIS, treating sequences as "sentences" and numbers as "words"
- LSTM: rows of the weight matrix of the embedding layer
- LSA: truncated SVD on the number-sequence cooccurrence matrix
- FastText: skip-gram embeddings with subword information
- Pre-trained embeddings learned from English text:
- GloVe trained on Common Crawl
- SkipGram trained on Wikipedia
- FastText trained on Wikipedia + UMBC + statmt.org news

Kevin Knight

kevinknight@didiglobal.com
DiDi

What's in an integer embedding?

- 'Evenness neuron': element 156 of OEIS-LSTM embeddings is positive for even values and negative for odd values, holds up to 50 with a few exceptions

Integer	1	2	3	4	5	6	7	8	9	10
Neuron 156	0.15	0.29	-0.04	0.26	-0.08	0.38	-0.31	0.39	-0.02	0.43

- Probing classifiers:

- Train logistic regression on integers 1-1000, test on integers 1001-2000
- Probe embeddings for divisibility by $2,3,4$, and primality
- More experiments with probing for value and magnitude in the paper

- Sequence completion:

- Testing on OEIS test set and human aptitude test questions, e.g. 65536, 256, 16, ? $\rightarrow 4$
- Lookup baseline: search for the sequence in OEIS and return the most frequent continuation

- Mathematical analogies:
- Human aptitude multiple-choice tests, e.g. 5: $36:: 6: ? \rightarrow 49$
- Predicting the answer with vector arithmetic

- Expanding integer seed sets:
- Given a small set of integers, predict possible expansions
- Predicting candidates by distance to embedding set centroid

5, 13, $29 \rightarrow$ 19, 7, 17, 3, 9, 23 (primes) 73, 97, $83 \rightarrow 79,71,67,89,77,103$ (primes)
729, 1024, $243 \rightarrow 2187,81,256,64,27,512$ (powers of 2 and 3)

